630 research outputs found

    Some Optimally Adaptive Parallel Graph Algorithms on EREW PRAM Model

    Get PDF
    The study of graph algorithms is an important area of research in computer science, since graphs offer useful tools to model many real-world situations. The commercial availability of parallel computers have led to the development of efficient parallel graph algorithms. Using an exclusive-read and exclusive-write (EREW) parallel random access machine (PRAM) as the computation model with a fixed number of processors, we design and analyze parallel algorithms for seven undirected graph problems, such as, connected components, spanning forest, fundamental cycle set, bridges, bipartiteness, assignment problems, and approximate vertex coloring. For all but the last two problems, the input data structure is an unordered list of edges, and divide-and-conquer is the paradigm for designing algorithms. One of the algorithms to solve the assignment problem makes use of an appropriate variant of dynamic programming strategy. An elegant data structure, called the adjacency list matrix, used in a vertex-coloring algorithm avoids the sequential nature of linked adjacency lists. Each of the proposed algorithms achieves optimal speedup, choosing an optimal granularity (thus exploiting maximum parallelism) which depends on the density or the number of vertices of the given graph. The processor-(time)2 product has been identified as a useful parameter to measure the cost-effectiveness of a parallel algorithm. We derive a lower bound on this measure for each of our algorithms

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Rssafe: Personalized Driver Behavior Prediction for Safe Driving

    Get PDF
    While the increased demand for taxi services like Uber, Lyft, Hailo, Ola, Grab, Cabify etc. provides livelihood to many drivers, the desire to raise income forces the drivers to work very hard without rest. However, continuous journeys not only affect their health, but also lead to abnormal driving behavior such as rash driving, swerving, sideslipping, sudden brakes, or weaving, leading to accidents in the worst cases. Motivated by the severity of rising accidents and health issues among drivers, this paper proposes a recommendation system, called RsSafe, for the safety of drivers. Aiming to improve the driving quality and the driver\u27s experience, RsSafe suggests that the driver accepts or rejects the next trip based on the predicted driving behavior. In particular, we propose a fusion architecture that learns to predict the driver\u27s behavior for the next trip using information from multiple streams. This architecture consists of Multi-task Learning with Attention (MTLA) that captures individual drivers\u27 personality traits to deal with the adaptability of system. We use publicly available naturalistic driving behavior analysis dataset, namely the UAHDriveSet, results show that the MTLA predicts with F-measure score of 96%; and outperforms the baseline as well as state-of-the-art models

    Towards a Realistic Model for Failure Propagation in Interdependent Networks

    Full text link
    Modern networks are becoming increasingly interdependent. As a prominent example, the smart grid is an electrical grid controlled through a communications network, which in turn is powered by the electrical grid. Such interdependencies create new vulnerabilities and make these networks more susceptible to failures. In particular, failures can easily spread across these networks due to their interdependencies, possibly causing cascade effects with a devastating impact on their functionalities. In this paper we focus on the interdependence between the power grid and the communications network, and propose a novel realistic model, HINT (Heterogeneous Interdependent NeTworks), to study the evolution of cascading failures. Our model takes into account the heterogeneity of such networks as well as their complex interdependencies. We compare HINT with previously proposed models both on synthetic and real network topologies. Experimental results show that existing models oversimplify the failure evolution and network functionality requirements, resulting in severe underestimations of the cascading failures.Comment: 7 pages, 6 figures, to be published in conference proceedings of IEEE International Conference on Computing, Networking and Communications (ICNC 2016), Kauai, US

    PS-Sim: A Framework for Scalable Simulation of Participatory Sensing Data

    Full text link
    Emergence of smartphone and the participatory sensing (PS) paradigm have paved the way for a new variant of pervasive computing. In PS, human user performs sensing tasks and generates notifications, typically in lieu of incentives. These notifications are real-time, large-volume, and multi-modal, which are eventually fused by the PS platform to generate a summary. One major limitation with PS is the sparsity of notifications owing to lack of active participation, thus inhibiting large scale real-life experiments for the research community. On the flip side, research community always needs ground truth to validate the efficacy of the proposed models and algorithms. Most of the PS applications involve human mobility and report generation following sensing of any event of interest in the adjacent environment. This work is an attempt to study and empirically model human participation behavior and event occurrence distributions through development of a location-sensitive data simulation framework, called PS-Sim. From extensive experiments it has been observed that the synthetic data generated by PS-Sim replicates real participation and event occurrence behaviors in PS applications, which may be considered for validation purpose in absence of the groundtruth. As a proof-of-concept, we have used real-life dataset from a vehicular traffic management application to train the models in PS-Sim and cross-validated the simulated data with other parts of the same dataset.Comment: Published and Appeared in Proceedings of IEEE International Conference on Smart Computing (SMARTCOMP-2018

    CSWA: Aggregation-Free Spatial-Temporal Community Sensing

    Full text link
    In this paper, we present a novel community sensing paradigm -- {C}ommunity {S}ensing {W}ithout {A}ggregation}. CSWA is designed to obtain the environment information (e.g., air pollution or temperature) in each subarea of the target area, without aggregating sensor and location data collected by community members. CSWA operates on top of a secured peer-to-peer network over the community members and proposes a novel \emph{Decentralized Spatial-Temporal Compressive Sensing} framework based on \emph{Parallelized Stochastic Gradient Descent}. Through learning the \emph{low-rank structure} via distributed optimization, CSWA approximates the value of the sensor data in each subarea (both covered and uncovered) for each sensing cycle using the sensor data locally stored in each member's mobile device. Simulation experiments based on real-world datasets demonstrate that CSWA exhibits low approximation error (i.e., less than 0.2∘0.2 ^\circC in city-wide temperature sensing task and 1010 units of PM2.5 index in urban air pollution sensing) and performs comparably to (sometimes better than) state-of-the-art algorithms based on the data aggregation and centralized computation.Comment: This paper has been accepted by AAAI 2018. First two authors are equally contribute

    Urban Air Mobility: Vision, Challenges And Opportunities

    Get PDF
    Urban Air Mobility (UAM) involving piloted or autonomous aerial vehicles, is envisioned as emerging disruptive technology for next-generation transportation addressing mobility challenges in congested cities. This paradigm may include aircrafts ranging from small unmanned aerial vehicles (UAVs) or drones, to aircrafts with passenger carrying capacity, such as personal air vehicles (PAVs). This paper highlights the UAM vision and brings out the underlying fundamental research challenges and opportunities from computing, networking, and service perspectives for sustainable design and implementation of this promising technology providing an innovative infrastructure for urban mobility. Important research questions include, but are not limited to, real-Time autonomous scheduling, dynamic route planning, aerial-To-ground and inter-vehicle communications, airspace traffic management, on-demand air mobility, resource management, quality of service and quality of experience, sensing (edge) analytics and machine learning for trustworthy decision making, optimization of operational services, and socio-economic impacts of UAM infrastructure on sustainability

    Efficiently Discovering Users Connectivity with Local Information in Online Social Networks

    Get PDF
    People\u27s activities in Online Social Networks (OSNs) have generated a massive volume of data to which tremendous attention has been paid in academia and industry. With such data, researchers and third-parties can analyze human beings’ behaviors in social communities and develop more user-friendly services and applications to meet people\u27s needs. However, often times, they face a big challenge of acquiring the data, as the access to such data is restricted by their collectors (e.g., Facebook and Twitter), due to various reasons, such as their user\u27s privacy. In this paper, we intend to shed light on leveraging limited local social network topological properties to effectively and efficiently conduct search in OSNs. The problem we focus on is to discover the connectivity of a group of target users in an OSN, particularly from the perspective of a third-party analyst who does not have full access to the network. For the analyst, even discovering a user\u27s local connections requires issuing a query through OSN APIs (e.g., Facebook Friendlist API or Twitter Followerlist API). We develop searching techniques which demand only a few number of queries for the connectivity discovery. After conducting an intensive set of experiments on both real-world and synthetic data sets, we found that our proposed techniques perform as well as the centralized detection algorithm, which assumes the availability of the entire data set, in terms of the size of the discovered subgraph connecting all target users as well as the number of queries made in the search. The experiment results demonstrate the effectiveness of incorporating topological properties of social networks into searching in the OSNs

    Federated Secure Data Sharing by Edge-Cloud Computing Model*

    Get PDF
    Data sharing by cloud computing enjoys benefits in management, access control, and scalability. However, it suffers from certain drawbacks, such as high latency of downloading data, non-unified data access control management, and no user data privacy. Edge computing provides the feasibility to overcome the drawbacks mentioned above. Therefore, providing a security framework for edge computing becomes a prime focus for researchers. This work introduces a new key-aggregate cryptosystem for edge-cloud-based data sharing integrating cloud storage services. The proposed protocol secures data and provides anonymous authentication across multiple cloud platforms, key management flexibility for user data privacy, and revocability. Performance assessment in feasibility and usability paves satisfactory results. Therefore, this work directs a new horizon to detailed new edge-computing-based data sharing services based on the proposed protocol for low latency, secure unified access control, and user data privacy in the modern edge enabled reality
    • …
    corecore